# The Performance of ASM-10 HP Arsenic Selective Media

Presentation by Peter Meyers ResinTech Inc



# **Interfering Ions**

#### > Ordinary Anion Exchange Resin

- Sulfate strong interference
- Phosphate modest interference
- Silica no interference
- TDS strong interference

#### > ASM-10 Media

- Phosphate modest interference
- Silica modest interference
- Sulfate no interference
- TDS very weak interference



# Stability of Various Medias

#### >ASM-10 HP Media

- Very stable physically
- Very stable within potable water pH range (5 to 10)
- Stable at high pH (above 13) and very low pH (to around 2)
- Somewhat stable in oxidants

#### ► Granular Medias (Iron, Aluminum and Titanium Medias)

- Somewhat stable physically
- Stable within potable water pH range (5 to 10)
- Not very stable at very high or very low pH
- Very stable in oxidants



# Why Choose ASM-10 HP?

- Low Cost
- Can Be Regenerated
- Easily Adapted to Existing Equipment
- Very Good Physical Strength
- Very Good Flow Characteristics
- Very High Capacity
- Very Low Leakage



100 ppm SO<sub>4</sub> and 150 ppb As <sup>+5</sup> flow rate 6 gpm/cu ft





100 ppm SO<sub>4</sub> and 50 ppb As <sup>+5</sup> flow rate 6 gpm/cu ft





100 ppm  $SO_4$  and 50 ppb As  $^{+3}$ flow rate 6 gpm/cu ft





100 ppm SO<sub>4</sub> 2 ppm PO<sub>4</sub> and 125 ppb As <sup>+5</sup> flow rate 6 gpm/cu ft





100 ppm SO<sub>4</sub> 10 ppm of SiO<sub>2</sub> and 125 ppb As <sup>+5</sup> flow rate 6 gpm/cu ft





#### **Arsenic Elution From ASM-10 HP**

(resin loaded with approx 30 gram/liter as As)





100 ppm  $SO_4$  and 125,000 ppb As  $^{+5}$  flow rate 2 gpm/cu ft





1000 ppm SO<sub>4</sub> and 125 ppb As <sup>+5</sup> flow rate 6 gpm/cu ft





100 ppm SO<sub>4</sub> and 125 ppb As <sup>+3</sup> flow rate 6 gpm/cu ft





100 ppm SO<sub>4</sub> and 125 ppb As <sup>+5</sup> flow rate 15 gpm/cu ft



Note: The sawtooth leakage is the related to flow stoppages and restarts



#### Stability of Exhausted ASM-10 HP

ASM-10 HP loaded with 30 gram/liter of As



#### **Comparison of Various Medias**

100 ppm SO4 and 80,000 ppb As +5flow 2 gpm/cu ft



# Initial Iron Leakage from Various Medias

at pH of 7.0 and approx 100 ppm TDS





# As Adsorption by Various Medias

#### **➢Ordinary Anion Exchange Resin**

- 30 grams of As per pound of resin (no sulfate)
- 2.3 grams of As per pound of resin (low sulfate)
- 0.02 grams of As per pound of resin (high sulfate)

#### >ASM-10 HP

- 2 to 4 grams As per pound of media at 100 ppb inlet (100 ppm sulfate)
- 15 to 30 grams As per pound of media at 100,000 ppb inlet (100 ppm sulfate)



# As Adsorption by Various Medias (cont'd)

#### > Activated Alumina

- 0.6 grams of As per pound of Alumina at pH 5.5 (100 ppm sulfate)
- 0.3 grams of As per pound of Alumina at pH 6.0 (100 ppm sulfate)

#### **►** Titanium Oxide (Metsorb G)

- 2 to 4 grams of As per pound of media at 100 ppb inlet (100 ppm sulfate)
- 7 to 15 grams of As per pound of media at 100,000 ppb inlet (100 ppm sulfate)

#### Ferric "Oxy-hydroxide"

- 1 to 2 grams of As per pound of media (100 ppm sulfate)

